Risk Insider: Phil Norton

Ponemon Go!

By: | August 10, 2017 • 3 min read
Phil Norton is President, Professional Liability for the retail brokerage division of Arthur J. Gallagher & Co., and is regarded as one of the world’s leading authorities in his field. He has been named a Risk and Insurance® Power Broker® seven times. He can be reached at [email protected]

The Ponemon Institute has been doing cyber-risk research reports on U.S. companies for more than a decade, and several years ago began collecting information from companies outside of the U.S. In June, they released their 2017 Cost of Data Breach Study – Global Overview (sponsored by IBM Security).

Advertisement




Cyber events now rank among the top three triggers for D&O derivative actions (along with M&A activity and environmental issues). Given the rising importance of cyber security and widespread misunderstandings on this subject, it is worth examining the report’s findings.  This study includes information from 419 companies of median size (in excess of 1,000 employees), of which 63 are from the U.S. The following are a few of the more important takeaways.

This study is broadly distributed and contains information on 17 different industries. Over multiple studies conducted by Ponemon, we have seen the industry-to-industry variance in breach costs as one of the most valuable deliverables. For example, health care companies experience per-record breach costs that are twice that of retail companies.

As breaches get larger, the cost increase is not linear.

Most importantly, while each company surveyed reported at least one breach, the number of records breached was confined to a range of less than 100,000. Prior studies also omitted reporting on large breaches. Anything significantly more than 100,000 records is apparently excluded by design. While avoiding outliers is especially helpful for comparing studies year over year, be wary of extrapolating conclusions regarding the cost of larger breaches.

Knowing that U.S. companies surveyed by Ponemon reported total breach costs averaging $7.35 million may be of limited value, but saying the U.S. cost went up 5 percent from a year ago is illuminating. Surprisingly, non-U.S. company results were down 10 percent compared to a year ago. Of course, note that Ponemon does not survey the same companies each year, so even comparisons have a margin for error.

The most talked about statistic from the Ponemon study is the breach cost per compromised record. Historically in the neighborhood of $200 per record, this has been widely misunderstood. The accompanying pie chart details the components given in the Ponemon study that go into their cost calculation.

Note that the majority of “costs” is due to losing customers (churning), which is not applicable to cyber insurance. Ponemon tracks the full “cost” of the breach — not a number we use to assess cyber risk for the purposes of insurance.

Beyond the 56 percent of cost related to churning, Ponemon’s detection costs include audit services and board communications, and their post data-breach costs may include product discounts. These “risk management” activities may be necessary, but they are not insurable.

For small breaches (3,000 to 100,000 records) maybe 30 percent of the costs cited by Ponemon are insurable. As breaches get larger, the cost increase is not linear. A data breach involving 40,000 records costs about 60 percent (not 100 percent) more than a 20,000-record breach.  As breaches get larger, the cost increases flatten even more.

Advertisement




Another highlight of the study is determining the root cause of data breaches. In the U.S., malicious or criminal attacks are responsible for half of the breaches, while system glitches and human error account evenly for the other half. But don’t underestimate the impact of employees. Some of the malicious attacks are perpetrated by ex-employees, and current employees may create glitches or plant malware. Still, the most rapidly growing trend is non-employee hacking, including ransomware.

As a finishing thought, the Ponemon Global study concludes that surveyed companies have a 27.7 percent likelihood of a material data breach over the next two years. It also identifies the three most effective factors for reducing breach costs as having an incident response team, making extensive use of encryption and training employees to detect and reduce cyber risks. Cyber insurance complements such effective risk management strategies in minimizing the likelihood of a breach as well as lessening the ultimate impact of cyber exposures.

More from Risk & Insurance

More from Risk & Insurance

Black Swan: EMP

Chaos From Above

An electromagnetic pulse event triggered by the detonation of a low-yield nuclear device in Earth’s atmosphere triggers economic and societal chaos.
By: | July 27, 2017 • 9 min read

Scenario

The vessel that seeks to undo America arrives in the teeth of a storm.

The 4,000-ton Indonesian freighter Pandawas Viper sails towards California in December 2017. It is shepherded toward North America by a fierce Pacific winter storm, a so-called “Pineapple Express,” boasting 15-foot waves and winds topping 70 mph.

Advertisement




Normally, Pandawas Viper carries cargo containers. This time she harbors a much more potent payload.

Unbeknownst to U.S. defense and intelligence officials, the Viper carries a single nuclear weapon, loaded onto a naval surface-to-air missile, or SAM, concealed below deck.

The warhead has an involved history. It was smuggled out of Kyrgyzstan in 1997, eventually finding its way into the hands of Islamic militants in Indonesia that are loosely affiliated with ISIS.

Even for these ambitious and murderous militants, outfitting a freighter with a nuclear device in secrecy and equipping it to sail to North America in the hopes of firing its deadly payload is quite an undertaking.

Close to $2 million in bribes and other considerations are paid out to ensure that the Pandawas Viper sets sail for America unmolested, her cargo a secret held by less than two dozen extremist Islamic soldiers.

The storm is a perfect cover.

Officials along the West Coast busy themselves tracking the storm, doing what they think is the right thing by warning residents about flooding and landslides, and securing ports against storm-related damage.

No one gives a second thought to the freighter flying Indonesian colors making its way toward the Port of Long Beach, as it apparently should be.

It’s only at two in the morning on Sunday, December 22, that an alert Port of San Diego administrator charged with monitoring ocean-going cargo traffic sees something that causes him to do a double take.

GPS tracking information indicates to him that the Pandawas Viper is not heading to Long Beach, as indicated on its digital shipping logs, but is veering toward Baja, Calif.

Were it to keep its present course, it would arrive at Tijuana, Mexico.

The port administrator dutifully notifies the U.S. Coast Guard.

“Indonesian freighter Pandawas Viper off course, possibly storm-related navigational difficulties,” he emails on a secure digital communication channel operated by the port and the Coast Guard.

“Monitor and alert as necessary,” his message, including the ship’s current coordinates, concludes.

In turn, a communications officer in the Coast Guard’s Alameda, Calif. offices dutifully alerts members of the Coast Guard’s Pacific basin security team. She’s done her job but she’s about an hour late.

At 3:15 am Pacific time on December 22, the deck on the Pandawas Viper opens and the naval surface-to-air missile, operated remotely by a militant operative in Jakarta, is let loose.

It’s headed not for Los Angeles or San Diego, but rather Earth’s atmosphere, where it detonates about 50 miles above the surface.

There it interacts with the planet’s atmosphere, ionosphere and magnetic field to produce an electromagnetic pulse, or EMP, which radiates down to Earth, creating additional electric or ground-induced currents.

The operative’s aim is perfect. With a charge of hundreds and in some cases thousands of volts, the GICs cause severe physical damage to all unprotected electronics and transformers. Microchips operate in the range of 1.5 to 5 volts and thus are obliterated by the billions.

As a result, the current created by the blast knocks out 70 percent of the nation’s grid. What began as an overhead flash of light plunges much of the nation into darkness.

The first indication for most people that there is a problem is that their trusty cellphones can do no more than perform calculations, tell them the time or play their favorite tunes.

As minutes turn to hours, however, people realize that they’ve got much bigger concerns on their hands. Critical infrastructure for transportation and communications ceases. Telecommunication breakdowns mean that fire and police services are unreachable.

For the alone, the elderly and the otherwise vulnerable, panic sets in quickly.

Hospital administrators feverishly calculate how long their emergency power supplies can last.

Advertisement




Supermarkets and other retailers anticipating one of their biggest shopping days of the year on that Monday, December 23, instead wake up to cold homes and chilling prospects.

Grocery stores with their electricity cut off are unable to open and product losses begin to mount. Banks don’t open. Cash machines are inoperable.

In the colder parts of the United States, the race to stay warm is on.  Within a day’s time in some poorer neighborhoods, furniture is broken up and ignited for kindling.

As a result, fires break out, fires that in many cases will not draw a response from firefighting crews due to the communication breakdown.

As days of interruption turn into weeks and months, starvation, rioting and disease take many.

Say good-bye to most of the commercial property/casualty insurance companies that you know. The resulting chaos adds up to more than $1 trillion in economic losses. Property, liability, credit, marine, space and aviation insurers fail in droves.

Assume widespread catastrophic transformer damage, long-term blackouts, lengthy restoration times and chronic shortages. It will take four to 10 years for a full recovery.

The crew which launched the naval surface-to-air missile that resulted in all of this chaos makes a clean getaway. All seven that were aboard the Pandawas Viper make their way to Ensenada, Mexico, about 85 miles south of San Diego via high-speed hovercraft.

Those that bankrolled this deadly trip were Muslim extremists. But this boat crew knows no religion other than gold.

Well-paid by their suppliers, they enjoy several rounds of the finest tequila Ensenada can offer, and a few other diversions, before slipping away to Chile, never to be brought to justice.

Observations

This outcome does not spring from the realm of fiction.

In May, 1999, during the NATO bombing of the former Yugoslavia, high-ranking Russian officials meeting with a U.S. delegation to discuss the Balkans conflict raised the notion of an EMP attack that would paralyze the United States.

That’s according to a report of a commission to assess the threat to the United States from an EMP attack, which was submitted to the U.S. Congress in 2004. But Russia is not alone in this threat or in this capability.

Wes Dupont, vice president and general counsel, Allied World Assurance Company

North Korea also has the capability and the desire, according to experts, and there is speculation that recent rocket launches by that country are dress rehearsals to detonate a nuclear device in our atmosphere and carry out an EMP attack on the United States.

The first defense against such an attack is our missile defense. But some experts believe this country is ill-equipped to defend against this sort of scenario.

“In terms of risk mitigation, if an event like this happens, then that means the best risk mitigation we have has already failed, which would be our military defense systems, because the terrorists have already launched their weapon, and it’s already exploded,” said Wes Dupont, a vice president and general counsel with the Allied World Assurance Company.

The U.S power grid is relatively unprotected against EMP blasts, Dupont said.

And a nuclear blast is the worst that can occur. There isn’t much mitigation that’s been done because many methods are unproven, and it’s expensive, he added.

Lloyd’s and others have studied coronal mass ejections, solar superstorms that would produce a magnetic field that could enter our atmosphere and wipe out our grid.  Scientists believe that an EMP attack would carry a force far greater than any coronal mass ejection that has ever been measured.

An extended blackout, with some facilities taking years to return to full functionality, is a scenario that no society on earth is ready for.

“Traditional scenarios only assume blackouts for a few days and losses seem to be moderate …” wrote executives with Allianz in a 2011 paper outlining risk management options for power blackout risks.

“If an event like this happens, then that means the best risk mitigation we have has already failed … because the terrorists have already launched their weapon, and it’s already exploded.” — Wes Dupont, vice president and general counsel, Allied World Assurance Company

“But if we are considering longer-lasting blackouts, which are most likely from space weather or coordinated cyber or terrorist attacks, the impacts to our society and economy might be significant,” the Allianz executives wrote.

“Critical infrastructure such as communication and transport would be hampered,” the Allianz executives wrote.

“The heating and water supply would stop, and production processes and trading would cease. Emergency services like fire, police or ambulance could not be called due to the breakdown of the telecommunications systems. Hospitals would only be able to work as long as the emergency power supply is supplied with fuel. Financial trading, cash machines and supermarkets in turn would have to close down, which would ultimately cause a catastrophic scenario,” according to Allianz.

It would cost tens of billions to harden utility towers in this country so that they wouldn’t be rendered inoperable by ground-induced currents. That may seem like a lot of money, but it’s really not when we think about the trillion dollars or more in damages that could result from an EMP attack, not to mention the loss of life.

Allianz estimates that when a blackout is underway, financial trading institutions, for example, suffer losses of more than $6 million an hour; telecommunications companies lose about $30,000 per minute, according to the Allianz analysis.

Insurers, of course, would be buffeted should a rogue actor pull off this attack.

Lou Gritzo, vice president and manager of research, FM Global

“Depending on the industries and the locations that are affected, it could really change the marketplace, insurers and reinsurers as well,” said Lou Gritzo, a vice president and manager of research at FM Global.

Gritzo said key practices to defend against this type of event are analyzing supply chains to establish geographically diverse supplier options and having back-up systems for vital operations.

The EMP commission of 2004 argued that the U.S. needs to be vigilant and punish with extreme prejudice rogue entities that are endeavoring to obtain the kind of weapon that could be used in an attack like this.

It also argued that we need to protect our critical infrastructure, carry out research to better understand the effects of such an attack, and create a systematic recovery plan. Understanding the condition of critical infrastructure in the wake of an attack and being able to communicate it will be key, the commission argued.

The commission pointed to a blackout in the Midwest in 2003, in which key system operators did not have an alarm system and had little information on the changing condition of their assets as the blackout unfolded.

Advertisement




The commission’s point is that we have the resources to defend against this scenario. But we must focus on the gravity of the threat and employ those resources.

Our interconnected society and the steady increase in technology investment only magnify this risk on a weekly basis.

“Our vulnerability is increasing daily as our use of and dependence on electronics continues to grow,” the EMP commission members wrote back in 2004.

But “correction is feasible and well within the nation’s means and resources to accomplish,” the commission study authors wrote. &

Dan Reynolds is editor-in-chief of Risk & Insurance. He can be reached at [email protected]